同济大学嵌入式系统与服务计算教育部重点实验室

[存为首页] [加入收藏]  

欢迎访问同济大学嵌入式系统与服务计算教育部重点实验室

 公元2017年9月21日[星期四]

总访问量:279778    

■首 页 ■实验室概况 ■科研平台 ■研究方向 ■科研队伍 ■科研项目 ■科研成果 ■开放课题 ■人才培养 ■文件下载
当前位置:主页-学术活动-“智信讲坛”(第五十五)期学术报告

“智信讲坛”(第五十五)期学术报告

浏览次数:307

【保护视力背景色: 杏仁黄 秋叶褐 胭脂红 芥末绿 天蓝 雪青 灰 银河白(默认色)】 【字色: 绿 粉红 深蓝】 【字体:8 7 6 5 4 3 2 1


  题目: Sparse Sensing for Statistical Inference
  
  报告人: Greert Leus
  
  时间: 2015年3月15日16:10-17:00
  
  地点: 电信大楼403室
  
  邀请人: 夏鹏飞 刘庆文
  
  报告人简介:
  Geert Leus received the MSc and PhD degree in Applied Sciences from the Katholieke Universiteit Leuven, Belgium, in June 1996 and May 2000, respectively. Currently, Geert Leus is an "Antoni van Leeuwenhoek" Full Professor at the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology, The Netherlands. His research interests are in the area of signal processing for communications. Geert Leus received a 2002 IEEE Signal Processing Society Young Author Best Paper Award and a 2005 IEEE Signal Processing Society Best Paper Award. He is a Fellow of the IEEE and a Fellow of EURASIP. Geert Leus was the Chair of the IEEE Signal Processing for Communications and Networking Technical Committee, and an Associate Editor for the IEEE Transactions on Signal Processing, the IEEE Transactions on Wireless Communications, the IEEE Signal Processing Letters, and the EURASIP Journal on Advances in Signal Processing. Currently, he is a Member-at-Large to the Board of Governors of the IEEE Signal Processing Society and a member of the IEEE Sensor Array and Multichannel Technical Committee. He finally serves as the Editor in Chief of the EURASIP Journal on Advances in Signal Processing.
  
  内容提要:
  Ubiquitous sensors generate prohibitively large data sets. Large volumes of such data are nowadays generated by a variety of applications such as imaging platforms and mobile devices, surveillance cameras, social networks, power networks, to list a few. In this era of data deluge, it is of paramount importance to gather only the data that is informative for a specific task in order to limit the required sensing cost, as well as the related costs of storing, processing, or communicating the data. The main goal of this talk is therefore to present topics that transform classical sensing methods, often based on Nyquist-rate sampling, to more structured low-cost sparse sensing mechanisms designed for specific inference tasks, such as estimation, filtering, and detection. More specifically, we present fundamental tools to achieve the lowest sensing cost with a guaranteed performance for the task at hand. Applications can be found in the areas of radar, multi-antenna communications, remote sensing, and medical imaging.
  
  
  欢迎各位老师同学踊跃参加!
 

发布日期:2016-03-11

本篇已是该组第一篇   

本篇已是该组最后一篇