同济大学嵌入式系统与服务计算教育部重点实验室

[存为首页] [加入收藏]  

欢迎访问同济大学嵌入式系统与服务计算教育部重点实验室

 公元2017年11月18日[星期六]

总访问量:287621    

■首 页 ■实验室概况 ■科研平台 ■研究方向 ■科研队伍 ■科研项目 ■科研成果 ■开放课题 ■人才培养 ■文件下载
当前位置:主页-学术活动-“智信讲坛”(第六十四)期学术报告

“智信讲坛”(第六十四)期学术报告

浏览次数:346

【保护视力背景色: 杏仁黄 秋叶褐 胭脂红 芥末绿 天蓝 雪青 灰 银河白(默认色)】 【字色: 绿 粉红 深蓝】 【字体:8 7 6 5 4 3 2 1


  题目:Social Influence Analysis for Business Intelligence
  
  报告人: Professor Wenjie Li
  
  时间: 2016年6月21日下午1:30
  
  地点: 电信学院403室
  
  邀请人: 张韧弦 副教授
  
  报告人简介:Dr Li is currently an associate professor of the Department of Computing at The Hong Kong Polytechnic University. She received the B.Sc. and M.Sc. degrees from Tianjin University, China, and the Ph.D. degree from the Department of Systems Engineering and Engineering Management at the Chinese University of Hong Kong, Hong Kong. Dr Li’s research interests include natural language processing, text mining, social media analysis, information retrieval, extraction and summarization. She has directed and participated in quite a number of research projects. As a principal investigator, she has received seven fully supported grants from Hong Kong Research Grant Council and a grant from National Natural Science Foundation of China. She has published about 200 papers in major international journals and conference proceedings (including IEEE TKDE, IEEE TNN, IEEE TASLP, ACM TOIS, ACM TALIP, ACM TSLP, CL, and conferences like AAAI, ACL, COLING, WWW, SIGIR, CIKM). Dr Li has served as the information officer of SIGHAN, the associate editor of IJCPOL, etc. She has also served as the publication chairs, tutorial chairs, area chairs and members of organizing and technical committees of many international conferences, including AAAI, ACL, EMNLP, IJCNLP, etc.
  
  内容提要:Social media platform provides people with an effective way to communicate and interact with each other. It is an undisputable fact that people’s influence plays an important role in disseminating information over social network. Social influence also creates opportunities for business companies to conduct online marketing activities. Although all influential users perform influence, it have been verified that the way people use to influence other varies and as a result different kinds of influence produce different kind of effects. We explored multi-view (semi-supervised) clustering approaches for influence role detection. We also studied how to use time-series models to formulate interpersonal influence by tracking user dynamic interactions and opinion changes. We proposed couple Markov chain models and recurrent neural network models to learn how influence emerges during communication. The learned models were then applied to opinion prediction.
  
  
  
  欢迎各位老师同学踊跃参加!
 

发布日期:2016-06-20

本篇已是该组第一篇   

本篇已是该组最后一篇