同济大学嵌入式系统与服务计算教育部重点实验室

[存为首页] [加入收藏]  

欢迎访问同济大学嵌入式系统与服务计算教育部重点实验室

 公元2017年12月13日[星期三]

总访问量:296604    

■首 页 ■实验室概况 ■科研平台 ■研究方向 ■科研队伍 ■科研项目 ■科研成果 ■开放课题 ■人才培养 ■文件下载
当前位置:主页-学术活动-美伊利诺伊斯理工大学孙贤和教授学术报告

美伊利诺伊斯理工大学孙贤和教授学术报告

浏览次数:252

【保护视力背景色: 杏仁黄 秋叶褐 胭脂红 芥末绿 天蓝 雪青 灰 银河白(默认色)】 【字色: 绿 粉红 深蓝】 【字体:8 7 6 5 4 3 2 1

报告题目:Memory Centric Optimization: Keep the memory hierarchy but nothing else
  报 告 人:Xian-He Sun
  时  间:2017年5月17日周三上午10:00
  地  点:电信楼527室
  摘  要:
  Computing has changed from compute-centric to data-centric. Many new architectures, such as GPU, FPGA, ASIC, are introduced to match computer systems with the applications’ data requirement, and therefore, improve the overall performance. In this talk we introduce a series of fundamental results and their associated mechanisms to conduct this matching automatically, and through both hardware and software optimizations. We first present the Concurrent-AMAT (C-AMAT) data access model to unify the impact of data locality, concurrency and overlapping. Then, we introduce the pace matching data-transfer design methodology to optimize memory system performance. Based on the pace matching design, a memory hierarchy is built to mask the performance gap between CPU and memory devices. C-AMAT is used to calculate the data transfer request/supply ratio at each memory layer, and a global control algorithm, named layered performance matching (LPM), is developed to match the data transfer at each memory layer and thus match the overall performance between the CPU and the underlying memory system. The holistic pace-matching optimization is very different from the conventional locality-based system optimization. Analytic results show the pace-matching approach can minimize memory-wall effects. Experimental testing confirms the theoretical findings, with a 150x reduction of memory stall time. We will present the concept of the pace matching data transfer, the design of C-AMAT and LPM, and some experimental case studies. We will also discuss optimization and research issues related to pace matching data transfer and of memory systems in general.
  
  报告人简介:
  Dr. Xian-He Sun is a University Distinguished Professor of Computer Science of the Department of Computer Science at the Illinois Institute of Technology (IIT). He is the director of the Scalable Computing Software laboratory at IIT and a guest faculty in the Mathematics and Computer Science Division at the Argonne National Laboratory. Before joining IIT, he worked at DoE Ames National Laboratory, at ICASE, NASA Langley Research Center, at Louisiana State University, Baton Rouge, and was an ASEE fellow at Navy Research Laboratories. Dr. Sun is an IEEE fellow and is known for his memory-bounded speedup model, also called Sun-Ni’s Law, for scalable computing. His research interests include data-intensive high performance computing, memory and I/O systems, software system for big data applications, and performance evaluation and optimization. He has over 250 publications and 5 patents in these areas. He is a former IEEE CS distinguished speaker, a former vice chair of the IEEE Technical Committee on Scalable Computing, the past chair of the Computer Science Department at IIT, and is serving and served on the editorial board of leading professional journals in the field of parallel processing. More information about Dr. Sun can be found at his web site www.cs.iit.edu/~sun/.
  
  欢迎各位老师同学踊跃参加!
 

发布日期:2017-05-15

本篇已是该组第一篇   

本篇已是该组最后一篇